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Asymptotic behaviour of solutions
of a nonlinear transport equation

By C.J. van Duijn and M. A. Peletier at Amsterdam

1. Introduction

In this paper we consider the asymptotic behaviour as t — oo and as ¢ | 0 of radial
solutions of the equation

(1.1) ﬁ(u),—i—div(ul—i—‘e,——Vu):O for (x,1)e @, xR™,

satisfying the boundary condition

ou 1
(1.2) —==(u,—u) for(x,1)edQ,xR".
ov ¢
The set €, is the outer domain {x € R?:|x| > ¢}, e, is the unit vector in the radial direction,
4 >0 and u, are given constants, and : [0,00) — [0, ) is a function to be specified later.
We use the subscript notation to denote partial derivatives.

Problem (1.1-2) arises in a two-dimensional model describing the transport of reactive
solutes, with scaled concentration u, through a porous medium in which the groundwater
flow is induced by well injection. The small parameter ¢ is related to thg well rafiigs qnd
the parameter 2 is the Peclet number. The boundary condition (1.2) describes the injection
of water with solute concentration u, into the flow domain.

The nonlinear function f in equation (1.1) reflects the effect of equilibrium adsqrp-
tion reactions of the dissolved chemicals on the surface of the soil particles. The canomcal
example is B(u) = u + y(u), where y is the so-called adsorption isotherm [4]. Two typical
isotherms are the Langmuir isotherm

kiu
1+kyu

w(u): s kl’k2>0’

and the Freundlich isotherm
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vy =ku?, k>0,0<p<1.

This model is described in detail by van Duijn and Knabner in [5]; we refer to [4] for a
general discussion of the underlying physical and chemical assumptions.

Since we only consider radial solutions, we seek a function u = u(r, t) that satisfies

2 —
(1) B+ ", =0, e<r<am, >0,
y)
(Ib) I ur=z(u—ue), r=¢1t>0,
(Ic) u(r,0) = uy(r), r>eg,

where u, : [¢,00) — [0, c0) denotes the radially symmetric initial distribution. Without loss
of generality we may consider the cases

(1.3) contamination process: u, =1, u,(0) =20,
and
(1.4) remediation process: u, =0, uy(c0) =1,

where we suppose that uy(c0) = lim u,(r) exists. Furthermore we suppose that u, satisfies

(A1) uyeC®'([e,0)), 0 Suy <1, and ruf(r) is uniformly bounded on (g, ).
About the function § we assume (cf. [4]):

(Hy1) peC*(0,0)n C([0,00));

(Hp2) B(0)=0, p'(s)>0and B"(s) £0 for s > 0.

Note that since f'(0+) = oo is allowed by Hypotheses (H;1-2), our formulation must
include this degenerate case. One of the consequences is the existence of free boundaries
separating the regions where u > 0 from the regions where u = 0. Furthermore we note
that equation (Ia) with A =1 reduces to the well-known porous media equation

(1.5) b= ¢@), with ¢=p".

A Cauchy-Dirichlet problem for equation (I1a) with A > 1 was studied by Goncerzewicz
[10], generalising results by Gilding [8] and Diaz and Kersner [3] who considered general
convection-diffusion equations in R*. Following these authors we introduce weak solutions
in the following sense. Let T be some fixed positive number, which eventually will tend
to infinity, and consider the half strip S& = {(r,£):e<r<oc0,0<¢<T}.

Definition. A non-negative function u : S% — Ris called a weak solution of Problem I
if
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(i) ue C(SE) and u has a bounded weak derivative u, in S%;

(i) for every test function ¢ € H!(S%) that vanishes for large r and at t =T,
© T
(1.6) | {Bw) o,r + GQu—ru)e,}drdt+ | Blug(r) ¢(r,0)rdr + Au, [ ¢(e,0)dt = 0.
S5 £ 0

If u satisfies (1.6) with the equality replaced by = (=) and with ¢ =0 in S7 then we call
u a sub(super)solution. O

Hypotheses (H;1-2) and (A1) ensure the existence of a unique weak solution u which
is smooth in the set {(r,7) e S&: u(r,t) > 0}. This is proved in Section 2.

Remark. Observe that when (Ia) is interpreted as a convection-diffusion equation
in R!, the sign of 1 — 1 determines the direction of the convection: when 4 < 1 it is directed
towards the origin, and when 1 > 1 away from the origin. This distinction will turn out
to be important when studying the asymptotic behaviour as ¢ | 0.

Our aim is to show that under certain conditions solutions of Problem I converge
to self-similar solutions when either ¢ | 0 or r — c0. The combination of these two limit
processes is explained by the following transformation:

r t
é = ga T= ;;i
under which Problem I becomes
A—1
(IIa) ﬁ(u)t+—€——u§—u§§=o, &E>1, >0,
(IIb) < u=A(u—u,), ¢E=1,t>0,
(IIc) u(,0) = uy(el), E>1.

Obviously the behaviour of solutions of Problem II for large 7 is strongly linked to that
of solutions of Problem I for either ¢ | 0 or t — co.

A scaling argument leads us to investigate self-similar solutions of equation (Ia) of
the form

(1.7) u(r, 1) =f(—k> =f@),
satisfying the equation

a8) ST BUY + (f = A7) =0,

where primes denote differentiation with respect to #. Since these self-similar solutions are
expected to arise in the limit ¢ | 0, we solve equation (1.8) in the domain 0 <# < co with
the combinations (1.3) and (1.4) as boundary conditions:
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(1.9) contamination process: f(0) =1, f(0)=0,
(1.10) remediation process: f(0) =0, f(0)=1.

Note that y =r/ 1/; = i/]/;, and therefore the self-similar solution satisfies both equation
(Ia) and equation (Il a).

The boundary value problems (1.8)-(1.9) and (1.8)—(1.10) are studied in Section 3.
In Section 4 we prove the main results of this paper. They concern the asymptotic behaviour
of weak solutions of Problem I. We shall need an additional hypothesis on u, and f§ in
order to prove these results:

o]

[ 7{B(uo(r) — Bug(c0))} dr

€

(A2) <.

Hypothesis (A2) can be interpreted physically as stating that the perturbation
uy — uq(o0) of the constant state uy(c0) has finite mass. We will show in Section 2 that
(A2) implies that

+e]

[ r{B(u(r, 1)) — Bluo(0))} dr

&

<o

for all > 0.

The double degeneration of (1.8) with (1.10) — the degeneration of f( f) at f = 0 and
the degeneration of the equation at # = 0, which coincide - forces us to assume a technical
hypothesis in order to prove the result for the remediation process:

B _
) e

p—1 where 0<p<1.

Note that in the case of a Freundlich isotherm the condition (H, 3) is satisfied with0 < p <1,
and in the case of a Langmuir isotherm with p=1.

The precise asymptotic statements are:

Theorem A. Let hypotheses (Hy1-2) and (A1-2) be satisfied. Further let u be the
solution of Problem 1 with u, =1 and uy(c0) = 0 (contamination process), and let | denote
the solution of (1.8) and (1.9).

(a) If ¢ is fixed, then
sup |u(r,t)—f(r/)/DI=00") ast— 0.

esr<w

(b) If uy =0, then for fixed t > 0

£

sup |u(r,t)-f(r/1/2)1=0<-;>k ase—0.

Here the exponent k is given by
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L (A3 for i<,
1/3 forAz1.

Theorem B. Let hypotheses (H;1-3) and (A1-2) be satisfied. Further let u be the
solution of Problem 1 with u, =0 and uy(o0) =1 (remediation process), and let f denote the

solution of (1.8) and (1.10). Then the conclusions are the same as those of Theorem A (with
uo =1 in part (b)).

Remark. The restriction to constant u, when ¢ is varied is a natural one. Since the
influence of changes in ¢ on the solution is small at a fixed time and away from the well,
it is necessary for convergence to self-similar solutions that the initial behaviour of the
general solution corresponds to the initial behaviour of the self-similar solution. In practical
terms, this means u, has to be constant. Observe that when u, is constant, the two limit
processes ¢ | 0 and ¢t — oo are truly equivalent.

Remark. As a by-product of the proof of Theorems A and B we obtain a pointwise
estimate of u. In the contamination case the self-similar solution is a subsolution for the
general solution, which implies the following inequality:

0 1—u(rt) S1—f(r/)1) forallr>e t>0.

The behaviour of 1 — f(5) near 1 = 0 is shown to be proportional to #* (Proposition 3.6),
and therefore for fixed r > ¢

1—u(r,t)=0(@""?*) ast— .
In the same way an estimate follows for the remediation case:

0 u(rt)Sfr/)/1) forallr>e 1>0.

Here the behaviour of f (Proposition 3.9) translates in a similar way to the behaviour of
u(r, 1) for fixed r as r tends to infinity.

2. Weak solutions: existence and uniqueness

We present here the existence and uniqueness results for weak solutions of Problerrll L
Most of these results are obtained by a straightforward generalisation of the w_/ork of ngz
and Kersner [3], Gilding [8], and Goncerzewicz [10]. In those cases e omit the.detaxls
and only give the appropriate references. However, special attention has to be given to
the flux boundary condition at r = e&.

As usual weak solutions are obtained as limits of app.roximating positive classical
solutions. Since these approximations are used later on in this paper to PTO‘;ebﬂie asymp-
totic results, we describe the procedure in some detail in the existence proof below.

Theorem 2.1. Let hypotheses (Hy1-2) and (A1) be satisfied. Then Problem 1 has a
unique weak solution.
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Proof. To show existence, we slightly alter the initial and boundary conditions in
Problem I, ensuring that the corresponding solution remains strictly positive. This is
achieved by considering approximating sequences {ug,},z; and {¥,},» 1, satisfying

o € C* ([e.n]);

Uy, LU, as n— oo, uniformly on bounded subsets of [¢, o0);

1
(21) ; é uOn é 1 on [8’ n]a
22)  sup lrug(NI= sup |rug(l;

(2.3)  ug,(n=9, forn—1=r=n;

Uuon(8) =0,

and
u,, (1) = u, — (u, — ug, (e))e™™ for0Lr<T,

where the constants §, are chosen in [1/n, 1]. Note that the compatibility condition
uen(o) = uOn(g)

is satisfied. In Problem I we now replace u, by u,, and u, by u,,. This yields the approxi-
mate problems

( A—1
ﬂ(u)t-l--—r——u,—ur,=0 in S&" = (e,n) % (0,T],
A
eay 1, %= ) atr=e 10,77,
u=79, atr=n,1te(0,T],
| 4= Uoy att=0,rele,n],

for n > 1. Existence and uniqueness of solutions to this problem are classical and can be
found in e.g. [12], page 491. The solutions obtained have the regularity

Coo(s;;_,n)mcz +a,1+a/2(S—%,F) .

In order to obtain an estimate on the spatial derivative of the solutions u,, we derive
an equation for the flux

F, = Au, — ru,, .

The functions u, satisfy the equation

1
(2.5) B ()t + ~ F, = 0.

Differentiating this equation with respect to r yields for F, the uniformly parabolic equation
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l 1 ﬂ,/(u ) .
! F =F —F {—— 44— >" &n
ﬂ (un) nt nrr nr{ P ﬁ,(u") Uy, mn ST .

Using (2.5) once more we find the boundary conditions

Hypothesis (A 1) and properties (2.1) and (2.2) of the functions u,, imply that F, is bounded
uniformly in n at £ = 0. By the maximum principle, the same then holds for F, on the
whole of S%". Therefore

(2'6) SEI_) Iunrl é L

san
for some L > 0 that is independent of ».

Next we investigate the regularity in time. We first consider the behaviour of u, at
the boundary r = .

Lemma 2.2. There exists a positive constant ¢ independent of n such that
1
lun(ga tz) - un(sa tl)l é c}tz - 11]2
forall 0=t 2t,£T.

Proof. We shall only prove the inequality u, (e, t,) — u, (&, 1) = —c(t, — 1,)"? for
t, 2 t,; the opposite inequality follows along the same lines.

We first consider an auxiliary problem: find z : [0, o0) X [0, 0) — R that satisfies
z, =z, forall (x,1)e(0,0)x(0,00),

along with initial condition z (-, 0) = 0 and boundary condition z, (0, -) = 1. This problem
has a unique solution which is of the form

z(x, z)=1/?f<%).

It is not difficult to verify that f is negative on [0, 00), has a finite limit £(0), and satisfies
S <0 on (0,00).

We now construct a comparison function for equation (2.4) that is based on the
function z. For 0 < < min{f'(s): 0 £s <1} to be chosen later, define

v(r, 1) = u, (e, 1)) +z(b™V2(r—e), t—t;) — L(r —&) —m(t — t,),,

ontheset e<r<n,t; <t<T, where m=|1—1|(b™*+ L)/(be). It then follows that
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d—1 ) 1 A—=1
2.7 B(v), — v, + - v, = B'(v) {v, - 50 v, + e Ur}

1 |A—1]
< p .
< B {v, e nv,l}
<0,
where we have used the fact that v,, <0 in the first inequality. In (2.7) we have changed

the nonlinearity § outside the range of u, such that §(v) is well-definedand 0 < b < ' (s) < 0
for all se R. This is necessary because v may not be positive everywhere on its domain.

We prove that u, = v, which implies the assertion. It follows from (2.7) that the mini-
mum of u, — v is assumed on the parabolic boundary of the set {e <r<n,1, <t <T}.
The bound (2.6) ensures that u, = v at ¢t =1,, and since u,(n,t)=12=u,(¢, t,) the same
holds on the right boundary {r =, t, < t < T}. Therefore a negative minimum of u, — v
can only be assumed on the boundary r = ¢, where

A
(un —U)r = ;(un“uen(t)) _b_1/22r+L

S

Choosing b sufficiently small we therefore obtain (u, — v), < 0 on the boundary r = ¢, and
conclude that u,Zvon {e<r=<n,t,<t<T} O
The regularity result of Gilding [6] then yields that

<C foralln.

“un”COH,onrz(W) =

This suffices to apply the Arzela-Ascoli Theorem and conclude that there exists a sub-
sequence that converges uniformly on compact subsets of S&. By a familiar argument (see
e.g. Oleinik [13], p.361) the limit function u can be shown to be a weak solution of
Problem I. This concludes the proof of existence. O

The uniqueness follows directly from this comparison principle:

Proposition 2.3 (Comparison Principle). Let u® be a subsolution and u* be a super-
solution of Problem 1, with initial values u and u?, and boundary conditions at r = ¢:

W —ug).

™

A
Wziw ) ad s

If uy S ul on [e,0) and ul < u?, then u' < u? on S:.

The proof of Proposition 2.3 is a simple extension of the proof in Goncerzewicz [11],

and follows the ideas of Diaz and Kersner [3]. This completes the proof of Theorem 2.1.
0
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We conclude this section with a property of solutions of Problem I that is crucial
for the large-time behaviour.

Proposition 2.4 (mass conservation). Let u be a solution of Problem 1. Then

T {B(u(r, 1)) — B(ug(0)} rdr = T {B(uo(r) — B(ug(20))} rdr + 22 (u, — g (c0)) .

This can be interpreted as stating that the only increase of ‘mass’ — in the case of
the model described in the introduction, this would be mass of contaminant — comes from
the injection at the boundary. The proof of this statement is analogous to the proof of
mass conservation for the porous media equation (1.5) [7].

3. Limit profiles

In order to obtain solutions of (1.8) subject to boundary conditions (1.9), (1.10) we
consider the slightly more general problem

I {BAOY+mf —Af) =0, 0<p<oo,
G- P(“’b){f«»w, f(c0)=b,

for any a, be[0,1]. We first prove existence and uniqueness of solutions of P (e, b) and
then enter more deeply into the specific cases P(0,1) and P(1,0). Some of the proofs will
only be sketched; the reader can find comprehensive and detailed studies of Problem P (1, 0)
in [5] and of Problem P(0,1) in [15].

3.1. Existence and uniqueness. Because of the possible degeneration of the equation

when f=0, we must again define the notion of a solution of this problem. For con-
venience we set

(3.2 Fmy=nf'm)—if(n), n>0.

Definition. Let a,b€[0,1]. A function f:[0,00) — [0,1] is called a solution of
Problem P(a, b) if

(i) Fand B(f) are locally absolutely continuous on [0, ©);

(i)
(33) Fit St (BN =0 ae on (0,0
(iid)

(3.4) f0)=a and f(w)=b.

We can directly deduce from this definition
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Proposition 3.1.  Let f be a solution of Problem P(a, b) and let 2 be the positivity set
n>0:f(n)> 0}. Then

@) feC'((0,00)NC*);
(ii) f is monotone, and '+ 0 on & unless a = b;
(iii) F(n) » —Ab asn — co.

Proof. Parts (i) and (iii) are proven in [5], and part (ii) follows from a local uni-
queness argument as in [1], [2]. O

About the positivity set # we remark that
. ifa=0and b>0, then 2 = (0,00) [15];

. if a> 0 and b = 0, then we distinguish two cases: if 1/f(s) is integrable at s =0,
then 2 = [0, L) for some L > 0; otherwise & = [0, ) [5].

When £ is unbounded, we have an a priori estimate of the rate of convergence at
infinity:

Proposition 3.2. Let f be a solution of Problem P(a,b). Then there exist positive
constants 1o, C, and K, such that

©3) b—f)SC ] e do

ant

for all n > n,.

The proof is given in [15] and uses a lower bound of f'(s) near s = b. Note that
(9.3) implies that

0
—Kg2lA
Ko dO'

lb—fml=C

e
n*

ol

C T ~2-/‘1[—§0'2/}'-1€_K02Md0'
n

A

A

P

_ —Ki-2Jp2
= Ce .

if n is large enough.
We have the following comparison principle.

Proposition 3.3 (Comparison Principle). Let f;, for i=1, 2, be solutions of P(a;, b;)
with a;, b;€ [0,1]. If a, £ a, and by < b, then f, £ f, on [0, c0).

Proof. Denote the positivity sets of the functions f, and f, by %, and %,. Suppose
that the difference v = f, — f, assumes a positive maximum at 7, & (0, ). Then f; () > 0
so that #, € #,, which implies that f; is twice continuously differentiable in #,.
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« If ny e %, then f, also is twice differentiable in 7, and then the result follows from
subtracting the equations for f, and f, at n = #,.

« If n,e R\ & then f;(y,) = 0, which implies f/(1,) = 0. From Proposition 3.1 it
follows that this only is possible when a, = b, and f; is constant on £,. Because f (,) > 0
we have a; =b, > 0, and the boundary conditions then imply that f, is not monotone.
This contradicts Proposition 3.1. O

Corollary 3.4. For every a,be[0,1], Problem P(a,b) has at most one solution.

Proposition 3.5.  For every a,be[0,1], Problem P(a, b) has a solution (which is unique
by Corolilary 3.4).

. ) 1
Proof. With the change of variables s = i n* and g(s) = f(n), Problem P(a, ) can
be written as

g+ us*{f(g)} =0 for 0<s<oo,

3.5 £y(a, b) {g(O) =a, g(o)=0b,

where ' = d/ds and the constants « and u are given by

2 1
d='/;{*'1 and ,{,l:il“.

A solution of P, (a,b) is defined in a sense similar to the case of Problem P(a,b), and it
can easily be verified that the two problems are equivalent.

In both @ and b are positive, then by the Comparison Principle any solution of
Problem P(qa, b) will take values between a and b. Therefore the problem is non-degenerate
and the existence of a solution to the boundary value problem P(q, ) can be shown by a
shooting argument: if 4 is the solution of (3.5) with initial conditions 4 (0) = a and h'(0) = 4,
then lim k(s) exists for all 4 > 0, depends continuously on 4, and tends to zero or infinity

when 4 — 0 or 4 — oo. This implies that there exists an 4 such that the limit is equal to
b. The details of this argument can be found in [15] and a similar argument is used by
Gilding and L. A. Peletier ([9], p. 532). In the rest of this proof we will suppose that a =0
and b > 0, and merely assert that the other case, 5= 0 and a > 0, can be handled in an
analogous way.

A solution of P, (0,) is constructed as the limit as ¢ | 0 of solutions of P, (e, b). For
& > 0 the solution of P, (e, b) is defined and unique, and by the Comparison Principle the
sequence {g,} depends monotonically on ¢&. We now show that the pointwise limit of this
sequence, denoted by g, is a solution of Problem P, (a, ). By twice integrating the equation
in P, (e, b) we find the following integral identity for g,:

(.6 g =b—p| [(1+0)0—as]e* {BE)— Pl (o))} do

for all s€e[0,00). The finiteness of the integral follows from the exponential convergence
proved in Proposition 3.2. Since g, | gas ¢ — 0, and therefore (8(b) — B(g,)) T (B(b) — B(g))
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on [0,00), we can apply the monotone convergence theorem to the integral in (3.6) to
conclude that it converges; the positivity of the left-hand side implies that the limit is finite.
This results in the same integral equality for the limit function g:

(3.7 g =b—pfA+x)o—as]e* {B(b) - p(g(0)}do

for all se[0,00). Starting with (3.7) and differentiating twice we can show that g is a
solution to Problem P, (0, b). This implies that the corresponding function f is a solution
of Problem P(0,5). O

3.2. Behaviour near zero. In the proofs of Section 4 we need an estimate of the
behaviour of the similarity solution near the origin. We restrict ourselves to the cases P(0, 1)
and P(1,0).

Proposition 3.6. Let f be the solution of Problem P(1,0). Then

lim n*~2f"(n) exists in (— 0,0).
nlo0

Proof. Writing equation (3.1) in the form

foA=1 1
w=———znp(f(n),
7 T2 (/)
we obtain for arbitrary n, n, € 2,
P
ML) = A (o) 2O
Letting 1 | 0 yields the result. O

For P(0,1) the analysis is more involved because the degeneracy of the nonlinearity
and the geometric degeneracy coincide at # = 0. We encounter these two elements when
describing the behaviour of solutions. In order to be able to make definite statements we
must assume the extra hypothesis on f

B
3

=p~—1 for some constant pe(0,1].

Thiscondition expresses that for small data 8 behaves essentially as a power with exponent p.

For a nonlinearity f in the form of B(f)= cf?, equation (3.1) has certain scaling
properties that allow us to transform it into an autonomous one, and then apply a phase
plane analysis. This analysis, which contains a complete classification of the behaviour of
solutions near the origin, is given in [15]. Here we summarise the results.

Proposition 3.7. Let f be the solution of P(0,1), where B( f) = cf* for some p € (0,1)

1.2_
and ¢ >0, and let u be given, as in Proposition 3.5, by p = EN h
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@) If 2 <2/(1 — p), then the limit

lim =~ exists in (0, c0) .
nl0

S
n

(b) If 2 =2/(1 — p), then

17 -
lim = 2cupil~r.
nio n*logy Kp
©) If 2>2/(1 —p), then
im L0 _ A4
nio ,71%,, Ak

in which k=2/(A(1 — p)) and

For more general nonlinearities § the analysis is more involved, and the results less
precise. We find

Proposition 3.8.  Let f be the solution of Problem P(0,1), where f§ satisfies (H,;1-3).
Then:

2
(@) If A< ——, then lim n~*f(n) exists in (0, o).
1—-p 7.0

2 o _ 2
(b) INém, then}llflgn ﬂ(f(n))—2</1 *—1—p>'

The number 2 /(1 — p) should be replaced by oo when p =1.

Proof. Introducing the variables

sg'(s)

AR TE

and 8(s) = us** 1B’ (g(s))

in equation (3.5), we find that they satisfy the system of equations

{sv’=y(1—v—5),
58" =6(a+1+L()y),

where
g9 (g(s)
S O

By (H,3) and the boundary condition g(0) =0 we observe that {(s) - p—1 as s 0.
Consequently this system is asymptotically autonomous in the sense of Thieme [17] as
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510 (orif o =logs, as ¢ —» —00). We wish to apply a theorem of Poincaré-Bendixson type
(Theorem 1.6 of the same reference) to conclude that (y, d) tends to an equilibrium of the
‘limit’ system

S’y’ =V(1 “’))‘5)5
(3.9) {35' =8(a+1+(p—17),

as 5] 0. According to [17], the only remaining condition to be verified is that the orbit
under consideration is bounded as s | 0.

To show that this is the case, remark that the concavity of g implies that
g(s)=sg'(s) forall s>0,

which gives 0 <y £1 for all s> 0. Since § is positive, the orbit (y, ) can only be un-
bounded in the positive d-direction. To force a contradiction, suppose that there exists a
sequence s, | 0 such that (s,) — oo and such that é'(s,) <0and |5'(s,) /7' (s,)| = oo. Since
o+ 1>0and {(s) » p—1 when 5] 0, there exists an &£ > 0 such that ¢’ is positive when
y < ¢. It therefore follows that y(s,) = ¢. On the other hand, we can write

o' _ S(a+1+(s)y)
I y(d—y—9)

and if y 2 ¢ then the right-hand side of this expression is bounded from above and below
when § is large. This contradicts the assumption that [6'(s,)/y'(s,)| = o0 as n — oo, and
we conclude that the orbit (y, §) is bounded and therefore tends to an equilibrium of the
limit system (3.9).

For the analysis of the equilibrium points of (3.9) it is convenient to introduce
Definition. Let ¢ € C!(0,6) for some 6> 0. Then

v(0) & lim 22X
x10 @(x)

(provided this limit exists)
is called the index of ¢.

If ¢ is a power of its argument, v(¢p) simply is the exponent. One can derive some
properties of v which extend this correspondance: if ¢ and y are such that v(¢) and v(y)
are defined, then

@ view)=v(p)+v(w);
(il) v(@ ) =v(p)v(y) provided y(0)=0;
(i) v(p*) =av(p) for all 2 e R;

(v) v(p)> —1 = e L'(0,6).
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Besides, by de I'Hdpital’s rule, the existence of v(¢’) implies that v(¢) exists and that
V) vie)=1+v(p).
Note that with this notation assumption (H,3) can be written as v(f') =p —1.

The system (3.9) has the equilibria e, = (0,0) and e, = (1,0), and if « + p < 0 then
the point
_fa+1 a+p
e (1—1)’ 1 —p)

is also an equilibrium point. Of these equilibria the first, (0, 0), can be quickly ruled out:
by definition v(g) = lim y(s), and by writing equation (3.5) as
slO0

sg"(s) _
g' ()

—4(s)

we see that v(g’) = — lim d(s). Consequently (y,5) — (0, 0) implies on one hand v(g') =0
s10

and on the other hand v(g) = 0; this is incompatible by property (v) above. For the other
two equilibria, we distinguish three cases:

* when « + p <0, the equilibrium (1, 0) is unstable (in backward time) and is there-
fore not admissible; it follows that (y,8) — e, as s | 0, and more specifically

0(s) = —(@+p)/(1 =p);
- when « +p =0, e, = ¢, and therefore §(s) - 0 as 5| 0;

- when a + p > 0, e, is the only admissible equilibrium and therefore v(g) = 1; using
properties (i)—(iii) we find that

v(s*B'(g()e'(s) =a+p—1>—1,
which implies by (3.5) and property (iv) that g” is integrable; as a result, g’(0+) is finite.
We can rearrange this information in the following form:
« when o +p > 0, iilng g'(s) is finite;

o+ p
1—p’

« when o+ p £0, lim ps*** g’ (g(s)) = —
sl0

In terms of A, f, and #, this is the statement of the theorem. 0O

4. The main result

This section is devoted to the proofs of Theorems A and B. We shall discuss the
proof in full for Theorem A, and merely comment on the differences with Theorem B.
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Proof of Theorem A. In order to compare the solution of the original problem with
the self-similar solution we reformulate the problem in self-similar variables. If u is the
solution of Problem I, then define z by z (5, 7) = u(r, t), where the independent variables
are again linked through the relations

t

and 1= —.

&

=
il
==

The function z satisfies the equation

4.1) rﬁ(z),—~%71/?(z),,+ 2, — 2y, =0 forn>1/]/;,r>0

and the boundary condition

z,=1)t(z—1) forn=1/)/7,7>0.
The first step consists of an integral estimate, derived from the differential equation.

Proposition 4.1. Let @ : R* — R be defined by

s}

P(1) = I[fv{ﬁ(zw,r)) —B(f)}dn, >0,

1/Vz

and suppose that either ¢ is fixed or u, is constant. Then there is a constant y such that

(42) o)<t forallv>0.

T
If ug, is constant, then y does not depend on .

Proof. By integrating (1.8) and using boundary conditions (1.9) and Proposition3.2
we find that

oo 1/

Vi
Vﬂ(f(n))ndn =i— [ B(Sm)ndy.

1/Vz 0

The conservation of mass (Proposition 2.4) reads in the #, T coordinates

mVﬁ(Z)ndn _ L ?ﬁ(uo(r))rdr—l-/l.

Vs g2t
By combining these two we find that @ is well-defined and that

© 1/Va
(4.3) ®(1) = — [ Blug(n)rdr+7 B ndn.

&
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The second term in (4.3) is bounded by f(1)/2. When ¢ is constant, the result follows
immediately; when ¢ varies, but u, is constant and therefore equal to 0, the first term on
the right-hand side vanishes and the remainder is bounded independent of &. O

The interest of this integral estimate lies in the fact that z and f are ordered, and
that therefore the argument of the integral is positive. Indeed, if v is the self-similar solution

of equation (Ia) corresponding to f, i.e. v(r,t) = f(r/ 1/;), we can integrate equation (I a)
from 0 to ¢ to obtain

} B)rdr+[Av—rv,]5=0.
(0]

Now v,(r, ) = — 1rt =3/2f(r/1/t) >0 for all r and ¢ and therefore we have
! 2
Av(e, 1) —ev, (e, 1) S A.

By the Comparison Principle (Proposition 2.3) we then find that u lies above v on the
whole of S%, which implies the same for z and f (on the appropriate domain).

Our aim is to convert an integral estimate related to (4.2) into a pointwise estimate.
For this we need the next lemma (for an idea of the proof we refer to [14]).

Lemma 4.2. Let ¢ be a non-negative continuous function on [0, co) with lower Lipschitz
constant L, i.e.

w 2 —L forall x,ye[0,00),x+y.

Let xo > 0. If | x¢(x)dx L a, then

sup ¢(x) £ 3|/6L2a.

XpSx<o0

We shall not apply this lemma directly to &, but to the integral

[ee]

n{zn,7) —f(m}dn.
.

1/Vz

For this integral we obtain an estimate similar to (4.2) by pointing out that, because f is
concave and strictly increasing on its domain, the function s+ f(s) — p’(1)s is nonde-

creasing for 0 <s<1. This implies that f(z(7,7)) — B(F () = B'(1)(z(n,7) — f(n)) and
thus

@ %
(4.4) g n{zn,1)—f(n)}dn = O

The crucial part in the application of Lemma 4.2 to estimate (4.4), with

¢(’7,T) = Z(T],'L’) “f(’?) »

7 Journal fiir Mathematik. Band 479
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is that we need to verify the lower Lipschitz continuity of ¢ with respect to the variable
n. For general f3, the function B(z(n, 7)) need not be lower Lipschitz continuous with
respect to 4, and therefore we switched here from (4.2) to (4.4). From Proposition 3.1 we
know that f is nonincreasing on R, so the lower Lipschitz constant of ¢ only depends
on z. We have

Proposition 4.3. If 0 < 1 <1, then there exist positive constants £ and m independent
of n and t such that

1-2
z,n, )2 ¢t 2 —m forallt>0 andn> 1/]/;.
If A =1, then there exists a constant m independent of n and © such that
z,(n,1)2 —m  for all 1> 0 and n > 1/]/;.

If, for the moment, we consider this proposition proved, the conclusions of Theorem A
follow by combining (4.4) and Proposition 4.3 and applying Lemma 4.2.

Proof of Proposition 4.3. Let z,(n,7) =u,(r,z) where u, denotes the regularised
solution constructed in Section 2. The domain of definition of z, is

T
D" = {(1,7): —= 0<1<
{(“)1/%<"<81/ s 2}

which is drawn in Figure 4.1.

n=

n= n/e\f

T/e?
M\

Figure 4.1. The domains D3" and E%"

The first part of the proof is the following lemma.
Lemma 4.4. There exists a positive constant C, depending on B, /. and u,, such that

C

|Zm1[§_n_ HD%"'

The constant C does not depend on n or T, and if u, is constant, then it does not depend on
g, either.
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Proof of Lemma4.4.  'We use again the flux F, introduced in the proof of Theorem 2.1.
First note that

E,(r, t) = }'Zn(n, ‘C) - nznr’(ns ‘C)

on the relevant domains. Then the estimate follows from the observation that both F, and
z, are bounded uniformly in n. If u, = 0, then by choosing §, = 1/n in (2.3) the constant
C can be chosen independently of ¢ as well. 0O

The remainder of the proof is based on the application of the maximum principle
for parabolic equations to certain flux-type functions, depending on the value of 1. We
distinguish two cases.

Casel. 0<A1=2. We truncate the unbounded domain D%" by considering

Ex"=Di"A{n<1}.

We assume that n > ]/7", so that the domain E7" is as is shown in Figure 4.1. On E2" we
define the modified flux function

1
4.5) F,=F,(n.7) = ﬂ"‘[zm,(n, )+ ;nﬁ(zn(mf))] :
Using equation (4.1) we find that F, satisfies
(4.6) tf'F,—F,,—bF,—cF,=d onEp",

where the coefficients b, ¢, and 4 are given by

— 14 1 i
b= =2 tap L e =Ja-0{p - s},
R R T YIehe

Here we note f’ and g for B'(z,) and B”(z,). Due to the regularisation, the coefficients
in (4.6) are all smooth and bounded on E%". Note that ¢ < 0 and d 2 0, and that therefore

F, is a supersolution for the equation

1'G,~ G, —bG,—cG=0 on Ex".

By the maximum principle (see e.g. [16]), a non-positive minimum of F, on Ez" must be
assumed on its parabolic boundary, i.e. I7U ;.

On I, given by n =1/ 1/2, we use the boundary condition and find

E /)70 =02 (/25,0150 — 1) + 3G 1)/7)
2 i (1-f1))/)

24,
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in which 4 is the (negative) limit value from Proposition 3.6. On I,, where n =1, we have

1 1 ..
F,=z,,1,7)+ 5[)’(2,,(11, N)z-C- 5[1(1) by Lemma 4.4. This implies that

F 2 —/:=min {A, —C— %ﬁ(l)}

1
on E3" where ¢ > 0, and therefore we have z,, 2 —¢n* 7' — 5 B(1) on Ex" for all n > ﬁ

When we combine this with Lemma 4.4 we obtain the required result.
Case I1. The case of A> 2 demands a different modified flux function:

F;l = Fn(na T) = ﬂl_l[zm,(’%?) - %Aﬂ(ﬂ(l) - B(Zn(nar)))] >

which satisfies

(48) p'F,—F,,—bF,=c {Fn + %/1'12"[5(1) - /3(2,,)]}

+d{F,+(—-Dn*"*[B(1) — B(z,)]} on Ex",

in which the coefficients 4, ¢ and d are given by

I S VO =02 ) -
bt = = ——=+3nf' =z, cln7) =544 =2) AN = ]
dn,t) = — %iﬁ'-

Now define the function w by

w(Fn.0)Ee {F+ ETIOR ﬁ(z,,)]} +d{F+ Q=D (B - BE)

and remark that ¢, d < 0. We claim that the function 7 72~ *(B(1) — B(z,)) is bounded
on R* by a constant independent of t and »: on one hand,

0 S ALB(1) — B)] £ 12 *TB(1) — B ()]
<250,

if n is small enough, in which 4 is again the limit value from Proposition 3.6. On the other
hand,

0> "B — B = B> 7.

The combination of the first for small # and the second for large # yields the uniform
bound. Therefore, by choosing F, € R, F, < 4 negative and large enough, w (Fy,7,T) can
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be made positive for all # and t. This implies that the constant F, is a subsolution for
equation (4.8), and by following the same line of reasoning as for case I, we can conclude

that F, = F, on E3", for all n> ﬁ The required result is then obtained in a similar
fashion. O

This concludes the proof of Theorem A.

The proof of Theorem B follows the same lines, with some alterations. First, the
ordering of the solution « and the self-similar solution f is reversed, which gives rise to
the definition

8@ = | n{B(f0) - B(r)}dn. ©>0.

%

The assertion of Proposition 4.1, however, holds unchanged, as does its proof. Second, if
we denote /(1) — z(n,7) by ¢ (1, 1), the application of Lemma 4.2 requires an estimate of
¢, from below. From Section 3 we know that f is strictly increasing on R™. For an upper
bound on z,, we have

Proposition 4.5. Let z be the solution of Problem 1 with u, = 0 and uy(c0) = 1, trans-
ported to the n, -plane. If 0 < J. <1 then there exist positive constants { and m independent
of n and 1 such that

1-2
2,072 +m forall t>0and n>1/)/1;
if A 21 then there exists a constant m independent of n and t such that

z,(n,1) £ m  forall >0 and n> 1/[/;.

The proof of Proposition 4.5 follows the same lines as that of Proposition 4.3, and
we shall only mention the flux function that is used:

F,= n"y[zm, + %nﬁ(zn)]

where y = min {4, 2}. The result is then again reached by combination of Propositions 4.1
and 4.5 and Lemma 4.2. O
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